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Characteristic classification of mass plays a role of vital importance in diagnosis of breast cancer. The
existing computer aided diagnosis (CAD) methods used to benefit a lot from low-level or middle-level
features which are not that good at the simulation of real diagnostic processes, adding difficulties in
improving the classification performance. In this paper, we design a deep feature based framework for
breast mass classification task. It mainly contains a convolutional neural network (CNN) and a decision
mechanism. Combining intensity information and deep features automatically extracted by the trained
CNN from the original image, our proposed method could better simulate the diagnostic procedure
operated by doctors and achieved state-of-art performance. In this framework, doctors' global and local
impressions left by mass images were represented by deep features extracted from two different layers
called high-level and middle-level features. Meanwhile, the original images were regarded as detailed
descriptions of the breast mass. Then, classifiers based on features above were used in combination to
predict classes of test images. And outcomes of classifiers based on different features were analyzed
jointly to determine the types of test images. With the help of two kinds of feature visualization
methods, deep features extracted from different layers illustrate effective in classification performance
and diagnosis simulation. In addition, our method was applied to DDSM dataset and achieved high
accuracy under two objective evaluation measures.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Breast mass classification

Being the second cause of death, breast cancer is one of the
most common cancers in women. According to a world health
organization (WHO) report, breast cancer accounts for 22.9% of
diagnosed cancers and 13.7% of cancer related death worldwide
[1]. To improve the five-year and ten-year survival rate and to
relieve great suffering of patients, the early diagnosis is of crucial
importance. Being a process of utilizing low-energy X-rays to
examine the human breast, mammography is the most widely
used screening and diagnostic tool in both clinical and scientific
fields. In order to analyze such an amount of mammograms gen-
erated daily in medical centers and hospitals, traditional solution
for this challenge is that radiologists have to browse all these
images day and night. The next several diagnosis processes also
exhaust the physicians, causing the diagnosis to be highly sus-
ceptible to errors. This situation also troubles physicians in other
fields, and computer-aided diagnosis (CAD) systems have been
playing more and more important parts in assisting and improving
).
physicians' work. In previous works, Doi [2] considered that CAD
had become one of the major research subjects in medical imaging
and diagnostic radiology. Ginneken et al. [3] pointed out that CAD
systems were of great help in diagnosis of chest radiography. Jiang
et al. [4] and Chan et al. [5] obtained the conclusion that CAD could
be used to improve radiologists' performance in breast cancer
diagnosis. Identifying benign and malignant masses is among the
core contents in diagnosis using mammography. Meanwhile, the
building of systems which can effectively assist to do mass clas-
sification is one of the hotspots in the mammography related CAD
field. Therefore, designing better classification algorithms and
frameworks has been attracting more and more attention.

However, as shown in Fig. 1, owing to the diversity in appear-
ance, it is difficult to distinguish the malignant masses from
benign ones. A number of researchers and their research teams
have been devoted to designing learning and classifying frame-
work to overcome this difficulty. Rangayyan et al. [6] proposed
using morphological features to characterize the roughness of
tumor boundaries and applied them in classification tasks; Mav-
roforakis et al. [7] used linear, neural and SVM classifiers to classify
masses with the help of textural features and conducted fractal
dimension analysis; Timp et al. [8] came up with a novel method
exploring the temporal change features among mammography
series by regional registration; Rojas-Domínguez et al. [9] per-
formed the analysis of the gradient orientation, fuzziness,
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Fig. 1. Examples of benign and malignant breast mass images. Instances in the first row are benign masses while ones in the second row are malignant.
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speculation, and mutual information of mass margins; Employing
BI-RADS mammographic features with SVM-REF classifier, Yoon
et al. [10] achieved a good performance in DDSM; Ramirez-Villegas
et al. [11] chose SVM and neural-based classification methods
combining Wavelet packet energy, Tsallis entropy and statistical
parameterization feature analysis; benefitting more from data
structure high accuracy was also reported by Wang et al. [12] in
the way of formulating this task into one second order cone pro-
gramming problem. Verma et al. [13,14] extracted various kinds of
features such as density, morphology, abnormity assessment rank,
and so on, for description of the masses. Then the soft neural
network and soft clustered based direct learning method were
employed to do the classification. Wang et al. [15] proposed a
latent feature mining based method which characterized spatial
and marginal information effectively and achieved good results.
More recently, Beura et al. [16] proposed a scheme utilizing 2D-
DWT and GLCM in succession to derive feature matrix form
mammograms for further classification. Besides, Xie et al. [17]
applied extreme learning machine method to improve the per-
formance of mass classification tasks.

Methods which were mentioned above used to extract and
utilize low-level features such as margin, texture and so on, or
middle-level features such as shape and some variants of bag of
words (BOW) [18–20], which has been proven to be effective by
Avni et al. [21]. Then the features are introduced into different
kinds of classifiers to categorize masses. Although the wide range
of traditional handcraft features seem like building a good
description of an image, there has been a significant gap existing
between these features and cognitive behaviors of physicians. And
they do not seem to cover the basic strategies [2] for development
of CAD methods and techniques. Strategies aiming at achieving
detection and quantitation of lesions in medical images should be
based on the understanding of image readings by radiologists. In
the real diagnosis process, doctors usually glance at the X-ray first
to get preliminary understanding of it. Then several regions that
might contain lesions would attract more attention, and the
overall look of these regions and details of the entire image would
leave impression on and result in different levels of knowledge in
the physician's brain. To make the judgement of whether a mass is
benign or malignant, doctors used to combine the varying levels of
knowledge and awareness with previous experience in similar
tasks. The procedure above is similar to that described by the
attending doctor we consult from, and it agrees with two repre-
sentational diagnosis methods: symptom comparisons and anti-
diastole. Among these processes, the hierarchical impression of
mass images and information processing of human brain are
difficult to be specified with traditional features and related
methods. Nevertheless, all these things which could only be
unspeakable account for a lot in the real diagnosis. So, methods
utilizing hierarchical representations and a similar decision
mechanism to the real diagnosis may be better choices.

In addition, various types of traditional features can improve
classification performance in most situations, but they may have
some negative impacts owing to the incompatibility. For example,
incompatible extraction methods and corresponding features are
less explicable when they are combined directly in a unified fra-
mework. However, designing an effective feature fusion strategy is
also exhausting in previous papers. On the contrary, hierarchical
frameworks could put features extracted from different levels
together to form a more explainable and unified structure,
avoiding fusing features directly with different models.

1.2. Deep learning and deep learning on biomedical image

From the year of 2006 on, a new machine learning paradigm,
named deep learning [22–24], has been playing a much more
important role in the academic community. And it has become a
huge tide of technology trend in the field of big data and artificial
intelligence. Simulating the hierarchical structure of human brain
and its data processing mechanism which transfers information
from lower level to higher level, deep learning introduces more
semantic information to the final representations. Thus deep
structure makes significant breakthroughs on image under-
standing, speech recognition, natural language processing and
many other areas [22]. The fever of deep learning has been
sweeping the world and has been attracting more attention of top
researchers. As results of all these efforts, a few outstanding deep
structures are proposed and prove to be successful, such as con-
volutional neural network (CNN) [25], sparse autoencoder (SAE)
[26], restricted boltzmann machine (RBM) [27,28], and so on.

As aforementioned, a convolutional neural network (CNN) is a
representative structure of deep models. It is a type of feedforward
artificial neural network where individual neurons are tiled in a
way that they respond to overlapping regions called receptive
fields [47] in the visual field. And it is inspired by biological pro-
cesses and is a variation of multilayer perceptrons which are
designed to reduce preprocessing.

Having been developed for more than three decades, CNN has
become an outstanding method. The powerful structures were
introduced by Fukushima [29]. CNN was later improved by LeCun
et al. [30]. The famous leNet-5 [31] being in form of CNN obtained
huge success in recognizing checking numbers. However, given
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more complex tasks, the computational complexity of network
would continue to increase as network become deeper, causing
the main limitation of deep structure at that time. In the sub-
sequent years, development of computing power and optimization
methods makes it possible to train a deeper CNN which is pow-
erful enough [32] to fulfill other more complicated tasks. Specially,
CNN has been applied in aspects of visual object recognition and
image classification tasks and has achieved superior performance
[33–35]. When it comes to the fields of biomedical image pro-
cessing, many breakthroughs are also made by the powerful
structure. Jain et al. [36], Jain and Seung [37], and Helmstaedter
et al. [38] applied CNNs to restore and segment the volumetric
electron microscopy images. In the next few years, CNN based on
patches was also applied by Ciresan et al. [39,40] to detect mitosis
in breast histology images. More recently, Zhang et al. [41] pro-
posed a CNN based method aiming at segmenting infant brain
tissue images in the isointense stage. A patch based CNN was
trained and applied to classify each pixel in the image to finish
segmentation. And results show that their proposed model sig-
nificantly outperformed previous methods on infant brain tissue
segmentation.

Being in much the same way of brain's information processing
and cognitive mechanism, deep learning could provide more
effective features for computer vision tasks, such as detection and
classification. And deep neural networks have been proved to be
more similar to the primate visual system and hierarchical sensory
processing systems in brain [42,43]. Inspired by the achievements
of CNN in other fields and its similarity to brain, we proposed a
deep feature based framework for breast masses classification. In
the proposed scheme, a convolutional neural network (CNN) was
trained on a large number of natural images and was fine-tuned
on a subset of breast mass images. The training strategy was
chosen to overcome shortage of breast images. In this framework
the data augmentation [60] operation was also introduced and
played a role. Then features of masses were extracted from dif-
ferent hierarchical levels of this model, with the help of which two
Fig. 2. The main components and connections between them in a deep CNN model. (Con
function we chose. (Pooling) is the max pooling operation. These operation units connect
to the traditional neural networks appeared in the last few layers.
classifiers were trained for the decision procedure. And we applied
a strategy in the decision mechanism, which fused the outcomes
from different classifiers to finish the classification.
2. Network training and decision mechanism

Our proposed breast mass classification method consists of a
hierarchical representation network and a series of decision
mechanism for these features. The fundamental blocks in this
network are introduced respectively. Then, training for our CNN
and decision mechanism is detailed as follows.

2.1. Network training.

As shown in Fig. 2, the CNN architecture we used in this paper
mainly includes 3 kinds of operational units: convolution, pooling
and Rectified Linear Unit (ReLU) [44] activation. Each convolution
layer in a CNN contains some of these units. Being the indis-
pensable component in CNN frameworks, convolution blocks
simulate orientation-selective simple cells in primary visual cortex
[25]. It computes the convolution of the input map x with a bank
of K multi-dimensional filters f and biases b. Here, H;W ;D
respectively stand for the height, width and depth of input map x,
while H0;W 0;D stand for the height, width and depth of convolu-
tion filters, d; d0; d00 stand for the channel index of filters, input map
and output map. Besides, H00;W 00;K stand for the scale of output
map y of this layer. xARH�W�D, f ARH0�W 0�D�K , yARH00�W 00�D�K ,
W 00 ¼W�W 0 þ1, H00 ¼H�H0 þ1:

yi00j00d00 ¼ bd00 þ
XH0

i0 ¼ 1

XW 0

j0 ¼ 1

XD

d0 ¼ 1
f i0j0d � xi00 þ i0 �1;j00 þ j0 �1;d0 ;d00 ð1Þ

Pooling is also an important kind of operation in CNN structure.
The pooling unit whose role is similar to complex cells in brain
visual cortex has a number of variations [25]. And all these ver-
sions have been discussed and compared in previous papers. From
volution) stands for the convolution operation in each layer. (ReLU) is the activation
ed successively in each layer. In addition, (Fully-connected layers) which are similar



Table 1
Detailed parameters of each layer.

Name Filter size Filter dimension Stride Padding

Conv1 7 1 2 0
ReLU1 1 1 0
Pooling1 3 3 2
Conv2 5 96 1 2
ReLU2 1 1 0
Pooling2 2 2 1
Conv3 3 256 1 1
ReLU3 1 1 0
Conv4 3 384 1 1
ReLU4 1 1 0
Conv5 3 384 1 1
ReLU5 1 1 0
Pooling5 3 3 1
Fc6 1 256 1 0
ReLU6 1 1 0
Fc7 1 2048 1 0
ReLU7 1 1 0
Fc8 1 2 1 0

Table 2
Main parameters of each layer.

Name Number of maps ReLU Pooling

Input 1 � �
Conv1 96 √ √
Conv2 256 √ √
Conv3 384 √ �
Conv4 384 √ �
Conv5 256 √ √
Fc6 2048 √ �
Fc7 2048 √ �
Fc8 2 √ �

The name, size, number of maps and whether there were ReLU and Pooling units
in each layer were illustrated in the table. In the name column, (Input) stands for
the mass images while (Conv) and (Fc) represent convolution and fully-connected
layer respectively. Values in the size and number of maps column are the size and
number of output map in each layer. (√) and (� ) in the last two columns illustrate
whether there were ReLU or Pooling units in each layer.
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all these variations, we chose the one named max pooling which
has been widely applied in many successful models. It computes
the maximum response of each feature channel in x in a H0 �W 0

patch. Here, H;W ;D and H00;W 00;K represent the scale of input and
out map of this kind of operation. xARH�W�D, yARH00�W 00�K :

yi00j00d ¼ max
H0�W 0

xi00 þ i0 �1;j00 þ j0 �1;d
ð2Þ

Besides, the pointwise activation function is another funda-
mental component in the model. It simulates excitability of neu-
rons in brain when excited by stimuli. There are also a number
kinds of activation functions in deep models. We chose the one
named Rectified Linear Unit (ReLU) [44] which has been proved
more efficient in computation in the papers of [45] and [46]. Here,
yijd stands for the response in output map of this layer with input
xijd in the corresponding location.

yijd ¼max f0; xijdg ð3Þ
The receptive fields [47] of different neurons in the network

appear in the forms of convolutional and pooling kernels which
differ in both size and weight in different layers.

Beyond the aforementioned components, there are several
other kinds of layers in this model. With the help of dropout
operation [33,46,49], we could reduce overfitting of the network
and learn more robust features. Besides, a cross-channel normal-
ization operator is also implemented at each spatial location across
all feature maps of the same layer to gain a better description of
input. The last layers are fully-connected ones which were fol-
lowed by logarithmic loss to be minimized.

Our feature representation net is a CNN inspired by [33,46]. In
order to overcome the challenge that a large training set is not
available in the field of mammograms, we trained our CNN on
LSVRC [49] which is a dataset containing more than 1 million
labeled natural images first. As the natural images in the database
are all with 3 channels, which are not in accordance with gray
level medical images and increased the computing consuming in
both training and testing stages. So they were transformed into
gray scale ones with a simple projection method. And the training
strategy mainly followed the strategy proposed by [33]. It is a
supervised learning process forming hierarchical feature detectors,
the learning rate of the training stage with LSVRC data was initi-
alized at 0.01 and was divided by 10 when the validation error rate
stopped improving with the current learning rate. The whole
training process continued for 100 cycles through the natural
image dataset. Then learning rate of training stage on breast mass
images was initialized at 0.00001, and it changed as the strategy as
that of the first training stage. And the second stage was executed
100 cycles. Meanwhile, main and details of the network structure
are shown in Tables 1 and 2. Then we applied fine-tuning opera-
tion which takes the already learned model trained on LSVRC,
adapted the architecture, and resumed training from the already
learned model weights on our dataset of mass images. Specifically,
breast dataset in this paper is made of 600 mass images of
227�227 which are extracted from DDSM [54]. According to the
successful application of [60] on medical image and followed the
diagnosis habits of the radiologist who we consulted from,
instances we applied had been rotated angles of 90°, 180°, 270° to
enlarge the dataset 3 times. Network parameters obtained from
training on LSVRC were set as initial values in the specific CNN for
mass images and optimized the network according to mass data-
set. The main parameters of each convolution architecture in this
network are given in Table 2. Size of feature maps in each layer are
determined by both sliding window size and striding of sliding
window in previous layers. And the number of feature maps or the
length of features in each layer is resulted from number of dif-
ferent types of convolution and pooling kernels.

Stochastic gradient descent (SGD) [50] was employed to opti-
mize our network which is very simple and efficient in the training
process. The training point at each iteration was selected at ran-
dom. Then the derivative of the loss term for that training sample
was computed resulting in a gradient vector. And parameters were
incrementally updated by moving toward the local minima in the
direction of the gradient. The most important operation is com-
puting derivative of the objective function, which is obtained by an
application of the chain rule known as back-propagation. Gen-
erally speaking, a CNN model contains several of all these blocks
above, forming directed acyclic graph (DAG). The DAG could be
simplified as Fig. 3, where each output of corresponding block
(f 1; f 2; f 3;⋯⋯f l) is described as x1; x2; x3;⋯⋯xl , and the para-
meters of each layer was w1;w2;w3;⋯⋯wl . So the derivative ofwl

in the loss layer is expressed in the form of back-propagation chain
rule as follow.

dz

d vec wlð ÞT
¼ dz

d vec xLð ÞT
d vec xL

d vec xL�1ð ÞT
⋯
d vec xlþ1

dðvec xlÞT
d vec xl

dðvec wlÞT
ð4Þ

To evaluate this CNN model, the loss of network was calculated
by the standard cross entropy between the predicted probability
distribution over two types of labels for each image and the
ground truth distribution which equaled to the logarithmic loss.
We used the backpropagation algorithm to calculate the gradient
with respect to the parameters of the model and trained the
network with stochastic gradient descent (SGD) by minimizing the
loss as described above. To obtain a better result of this fine-tuning



Fig. 3. The directed acyclic graph (DAG) representation of a CNN. Different layers in the structure were described by operation of weights and input successively.

Fig. 4. The flow chart of the test process. As illustrated from the top down in this
figure, high-level and middle-level features of a test image were extracted from the
fine-tuned network before. Then these features were classified by two classifiers in
a two-step decision mechanism.
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operation and to avoid the oscillatory of loss function, we applied a
strategy that the learning rate was reduced gradually during the
whole process. Specifically, the learning rate is set to a smaller
value if reduction of loss function is less than the threshold after
several times of iterations. In addition, the initial value of learning
rate is set up as a small one.

After obtaining the fine-tuned CNN, the hierarchical features
could be extracted through the feed-forward model. For example,
an instance is input into this structure to be handled with various
methods of different layers. As a result of each operation, output of
each layer is presented in a modality of feature maps which con-
tained a lot of channels, and these are actually the hierarchical
features we applied in the paper. Meanwhile, in both training and
testing processes we used some basic functions of the toolbox
named matconvnet [61].

2.2. Decision mechanism

The features we chose for training the classifiers which divide
the input images into two types were extracted from two different
layers of this network. Concretely speaking, they were from the
layers of Conv5 and Fc7, both of which were in the form of column
vector.

Then two linear SVM classifiers based on the hierarchical fea-
tures were trained on training dataset and tested on test dataset to
predict a test image was whether benign or malignant. The SVM
we preferred was the most basic one in LIBSVM [51] toolbox,
resulting in fast calculations in both training and testing proce-
dures. And all its parameters were chosen as the defaults without
the time consuming procedure of parameter selection. Comparing
with the results of kernel SVM experiments and k-fold cross
validation operation, there was a trade-off between efficiency and
effectiveness of the performance when we chose the basic linear
SVM classifier. As were shown in Fig. 5 and Table 3, we applied the
SVM with RBF kernel and spent plenty of time doing experiments
on selecting the optimal value of C and Gamma which are widely
believed as the most important parameters of RBF kernel SVM in
LIBSVM. Concretely speaking, we set both C and Gamma to a
substantial range of 2�15;2�14;⋯;20;⋯;214;215 and summarized
the results. As it was shown in Fig. 5, two coordinate axes repre-
sented the values of C and Gamma which were in the form of
power-of-2 while the legend value stood for classification accu-
racy. The best performance was 97.0% (C ¼ 25, Gamma¼ 2�12)
which was a little bit better than that (96.7%) of the linear SVM
with default parameters. However, it took us 77,180 s to do para-
meters selection experiments and it was more than ten thousand
times of the experiment with default values. In addition, we
applied k-fold cross validation in our linear SVM experiments.
From the results in Table 3, we could clearly see that the time
consuming k-fold cross validation did not improve the perfor-
mance obviously either. So we still selected the linear SVM setting
all parameters as default values for its far much higher efficiency
and a good enough performance.

We propose a strategy to combine outcomes of these two
classifiers. As shown in Fig. 4, in the testing process, if the
outcomes of two classifiers consist with each other, we take the
outcomes as correct judgments and add them to a subset of final
result which is named as result1. Otherwise, the test images
causing inconsistent outcomes are joined to a dataset called
uncertain set. To decide which type each instance in the testing set



Fig. 5. Performance of kernel SVM with different C and Gamma.

Table 3
Classification accuracy of k-fold cross
validation.

k (k-fold) Classification accuracy (%)

2 96.7
3 97.1
4 97.3
5 97.6
6 97.5
7 97.6
8 97.5
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belongs to, we use the original gray information to calculate clo-
seness of these instances to benign and malignant ones in the
training set. In the process of closeness calculation, benign and
malignant images in the training dataset were clustered into
several subclasses respectively, with the help of which we could
obtain the cluster centers and number of each subclass in both two
types for the next similarity measure.

In procedure of clustering, instances in training set are clus-
tered by hierarchical K-means method [52]. In this method, images
could be separated into several subclasses with unbalanced scales.
Owing to the hierarchical method, the native data structure of
dataset is kept by these clustering centers and unbalanced scales,
both of which play important roles in the whole mechanism.
According to the result of closeness measure, the uncertain set is
divided into two types, forming result2, the other subset of final
result. Consequently, the final result contains result1 and result2 is
obtained.

The similarity to each kind of mass images is defined as follows.
Here, instance in the uncertain set is xUi ; i¼ 1;2;…m; clusters of
benign and malignant ones in training set is cBj ; j¼ 1;2;…n and
cMj

; j¼ 1;2;…n respectively; numbers of instances in subclass are
NBj ; j¼ 1;2;…n in benign data and NMj

; j¼ 1;2;…n in malignant
data; jxUi

�cBj j and jxUi
�cMj

j were both euclidean distance of
uncertain instance xUi

to center of clustering. The similarity of one
instance in the uncertain set to benign ones is:

SUiB
¼ 1
Pn

j ¼ 1
NBj

NB
jxUi

�cBj
j
; i¼ 1;2;…m ð5Þ
And similarity of one instance in the uncertain set to malignant
ones is:

SUiM ¼ 1
Pn

j ¼ 1
NMj

NM
jxUi

�cMj
j
; i¼ 1;2;…m ð6Þ

After having obtained the similarity value of each instance, we
make the final decision for this subset obey the rules given below:

If SUiB
4SUiM

, the instance is considered as benign;
If SUiB

oSUiM
, the instance is considered as malignant;

If SUiB
¼ SUiM

which is rare in our experiments. We consider the
instance is benign in accordance with the statistics of American
government that the risk of benign breast masses was almost
3 times bigger than that of malignant ones [53].

The deep structure framework is proposed for extracting glo-
bal, local and detail symptoms of mass images, which helped to
form a unified description of mass images. The decision mechan-
ism imitated physicians' diagnosis process which mainly con-
tained symptom comparisons and antidiastole. Deep features
extracted by our CNN played important roles in the scheme as they
were thought to be in accordance with cognitive principle of
human brain, as they were better simulations of the impressions
left by masses on doctors, respectively.
3. Datasets and metrics

In this section, datasets and evaluation methods for both pro-
posed method and reference methods were introduced.

3.1. Datasets

The dataset we chose to train our CNN model is a subset of
Imagenet which is named LSVRC, and it contains more than
1 million natural images. Being the most popular natural image
databases in the field of deep learning, LSVRC has become the
choice of many researchers. It provides enough instances with
determined labels, and this is quite important in training a
supervised deep model.

Besides, the dataset we chose to do fine-tuning on for our CNN
and conduct experiments on was a subset from the Digital Data-
base for Screening Mammography (DDSM) [54]. The database is
provided by the University of South Florida. DDSM contains more
than 2600 cases, and each case includes four images above breast,
along with associated patient information (age at time of study,
ACR breast density rating, subtlety rating for abnormalities, ACR
keyword description of abnormalities) and image information
(scanner, spatial resolution, etc.). In this database, images con-
taining suspicious areas have associated pixel-level “ground truth”
information about the locations and types of suspicious regions.

The mammograms in DDSM have been detected and labeled to
generate a dataset of 600 images before the classification, of which
50% are benign and 50% are malignant. Meanwhile, all the mass
images we chose were representative and challenging ones. The
mass images were divided into both training and testing sets of
same size, of each of these sets were 150 benign and 150 malig-
nant ones. And each instance in the dataset is a gray scale image
with the size of 227�227. The method with which we detected
the mass region was proposed in our previous work [55]. In order
to improve the performance of CNN, both the training and testing
images had been normalized and whitened before they were input
to the network. And these operations were widely applied in a few
deep learning models. Instances in the dataset were subtracted by
their mean and they were normalized to the range of [0, 1]



Table 4
Classification performance of different methods in literature.

Reference Features Database/size of dataset Classification accuracy (%)

Rangayyan et al. Compactness, Fourier descriptors, moment-based shape factors, and chord-length
statistics

MIAS & Calgary/54 88.9

Panchal et al. Gray level based features, BIRADS features, patient age and subtlety features with
Auto-associator MLP

DDSM/200 91.0

Mavroforakis et al. Textural features and fractal dimension analysis DDSM/130 83.9
Rojas et al. Spiculation, gradient orientation, mutual information, fuzziness of mass margins DDSM & MIAS /319 81.0
Cheng et al. [59] BoW and histogram similarity Galactograms/23 80.7
Verma et al. Density, mass shape, margin, abnormality assessment rank, patient age, subtlely value DDSM/200 88.8
Ramirez-Villegas et al. Wavelet packet energy, Tsallis entropy and statistical parameterization MiniMIAS/400 93.8
Xie et al. Gray level features and textural features DDSM/300 MIAS/60 95.7 96.0
Beura et al. Combination of DWT, GLCM and BPNN MIAS/320 97.4
Wang et al. Latent spatial and statistical marginal characteristics DDSM/600 92.7
Wang et al. Data with agglomerative hierarchical clustering DDSM/464 91.4
Ours Deep features from different layers DDSM/600 96.7

Fig. 6. ROC curves of middle-level feature, high-level feature based classification
and our proposed method.
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according to [56]. Then we whitened normalized data with the
method named PCA whitening by dividing the standard deviation
of its elements.

3.2. Metrics

To evaluate the performance of our proposed framework, we
used both objective and subjective evaluation. With the help of
consideration from these two aspects, we could appraise our
method more effectively.

The objective measures we chose were receiver operating
characteristic (ROC) curves and classification accuracy with
deviations, both of which were preferred in most papers for eva-
luation of classification methods.

The definition of ROC curve is:

sensitivity¼ TP=ðTPþFNÞ

specificity¼ TN=ðFPþTNÞ
Here TP stands for the true positive cases in detection results, and
TN denotes the true negative cases. In addition, FP contains the
false positive cases, and FN equals the false negative cases. In the
figure of ROC curve, the ordinate and abscissa were sensitivity and
specificity respectively. A larger area under this curve stands for a
better classification performance.

Another objective evaluation was the accuracy with deviations.
In the task of cataloging mass images, classification accuracy is of
vital importance. Performance with high accuracy could provide
the doctor with a lot of help in the diagnostic process, which was a
matter of survival and cure rates for patients. Given all these
above, the accuracy with deviations was applied in this paper both
for evaluation of our framework and for comparison with tradi-
tional methods. The calculation of these evaluation metrics were
given as follows:

accuracy¼ 1
N

XN

i ¼ 1

TPiþTNi

TPiþFNiþFPiþ TNi

std¼ accuracy�meanðaccuracyÞ
N

Here, N is the number of testing times. TP, TN, FP and FN are in the
same senses as they are mentioned above.

Two subjective evaluations we chose were described next.
In order to show the performance of feature extraction more

intuitively, we chose t-distributed stochastic neighbor embedding
(t-SNE) [48] as one of the subjective evaluation methods. The t-
SNE method visualizes high-dimensional deep features and ori-
ginal images by giving each data point or instance a location in a
two-dimensional map. This method was proposed by Hinton in
2006, and it has been proved to be quite effective in evaluation of
various kinds of features. The t-SNE map can be explained as that
the more linearly separable points in the two-dimensional map,
the better this feature will perform.

The last subjective metric was inspired by deconvolution net-
work. To show what features of different levels are like, we applied
deconvolution, activation and other operations on features in
middle and high levels [57,58]. With the help of all these means,
the rebuilding maps which were in the same size of input images
assisted to show the emphasis of features on different levels. And
we benefit from it to know whether these features could represent
mass images in different scales.
4. Results and analysis

We compared the performance of the proposed framework
with that of representative methods in the literature. Even the
scales of datasets differed in these methods, they were in the same
format. So the corresponding previously reported classification
performance was still an effective standard to evaluate the
improvement and setback of various methods. As shown in
Table 4, a number of features were employed in these methods. It
was obvious that frameworks with relatively good results used to
apply 3 or more different kinds of features in the classification



Fig. 7. The t-SNE maps of hierarchical features. From left to right are respectively original images, middle-level feature and high-level feature.

Fig. 8. Hierarchical features visualization of some benign instances. Each column represents an instance and from top to bottom are original images, middle-level feature and
high-level feature.

Z. Jiao et al. / Neurocomputing 197 (2016) 221–231228
task. As a result, the feature extraction process was complex in
structure. Meanwhile, the challenge of making effective use of
various types of features was inevitable in these frameworks,
causing most of these researches made many efforts to find a
fusion strategy for these features. However, methods with less
complexity in feature extraction step did not seem to gain satis-
factory results on a larger dataset which contained more than 200
instances. And results show clearly that a single kind of traditional
feature was not sufficient for this task. The proposed framework
took full advantage of deep features from a single CNN model,
forming a unified feature extraction structure. From the compar-
ison in the table, the proposed decision mechanism was not sim-
ple enough but effective to obtain good performance on a testing
dataset of 300 instances. Both the scale of dataset applied and
classification accuracy of our method were competitive among all
these frameworks. Because it was a better simulation of physi-
cian's diagnosis procedure, our proposed method made more
sense in terms of CAD.

As shown in Table 4 and Fig. 6, if the middle-level and high-
level features were used individually for the classification task,
performances were not that good. Once our decision mechanism
joined, the whole framework could outperform a lot at both ROC
curve and classification accuracy. Fig. 7 also demonstrates the
ability of CNN model to extract discriminative features in a
intuitive way. The method of t-SNE was used to form maps
visualizing instances of the dataset in different levels. The eva-
luation criterion was that the more instances in the map were
separable the better this feature performed. Here, the maps shown
from left to right are the t-SNE maps of original images, middle-
level and high-level features extracted from our CNN respectively.
Different colors represented instances of different types. From all
these maps, we could obviously notice that deep features improve
the differentiation of two types of instances, which equaled that
instances were much more separable after they were represented
by deep features. It was of great help for classifiers to distinguish
different kinds of instances.

To show what the features from different layers focused on, we
adopted a deconvolution based method to visualize images hier-
archically. As shown in Figs. 8 and 9, the first rows in both figures
stood for original images of selected instances while the middle
and bottom ones were middle-level and high-level features. As all
the images came from the associated layers, they represented
what levels emphasized on. And it was in evidence that maps from
high-level feature paid more attention to the overall feel of mass
images while that from middle-level feature and original image
captured more local and details of the images. Meanwhile, the
hierarchical expression was a progressive one during its



Fig. 9. Hierarchical features visualization of some malignant instances. Each column represents an instance and from top to bottom are original images, middle-level feature
and high-level feature.

Fig. 10. Comparison of our scheme with other feature based methods on datasets
of different sizes.

Table 5
Comparison of our network with traditional ones.

Name Size
(MB)

Parameters Time per image
(ms)

Classification accuracy
(%)

Caffe-ref 233 6.1eþ07 2.97 92.0
VGG 528 1.4eþ08 13.53 97.0
Ours 204 5.8eþ07 1.10 96.7
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evaluation, which makes the feature representation more con-
sistent with thinking activities in doctors' brain during the
diagnosis.

In order to show the stability of our proposed algorithm when
it comes to a situation that only a tiny database of breast mass
images could be obtained, we execute our scheme on different
scales of datasets and compare its outcomes with the state of art
algorithm (BoW). In Fig. 10, points in the red curve stand for the
classification accuracy of our method when it comes to datasets of
various scales (100, 200, …600). And the blue curve is the per-
formance of BoW-based scheme which is the state of art one in
mass classification. The other two curves are also typical schemes
which are histogram of oriented Gradient (HOG) and scale invar-
iant feature transform (SIFT) based methods. From the two curves
of different colors, we could significantly draw a conclusion that
our proposed method outperforms the state of art one on both
stability and the accuracy of classification. Meanwhile it also
demonstrates our method to be effective when large datasets are
not available in the medical field which is one of the main chal-
lenges presented by this special issue.

In addition, in order to achieve the state of art results that were
described in our paper, we performed various experiments to
obtain the most suitable network structure for this task. We
compared our network structure with the most widely used var-
iations of Alex net at aspects of model size, number of parameters,
time consuming and classification accuracy. These two models
have been proved to be effective in a variety of tasks. From the
contents of Table 5, we could see that our network achieved quite
a competitive result with less storage space than Caffe-ref net.
Though the classification accuracy of our net is a little bit worse
than that of the VGG net, the time consuming, storage space and
number of parameters are far much better.
5. Conclusion

In this paper, we proposed a novel mammographic masses
classification framework. With the help of our previous work, the
mass images were obtained from DDSM to form a dataset first.
Instances in the dataset were whitened for preprocessing. Based
on the dataset, we applied fine-tuning operation on the trained
deep CNN model to acquire the feature extraction network for the
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next procedures. All blocks in the deep structure were the most
effective ones in the state-of-the-art papers. Then middle-level
and high-level features were extracted from different layers of this
network for training two linear SVM classifiers. Owing to the
validity of deep features, the simplest linear classifiers are pow-
erful enough to distinguish instances. Combining outcomes of
these two classifiers, we got result1 and the uncertain set. Mean-
while, the weighted similarity was calculated to decide labels of
the uncertain set. Simulating the hierarchical structure of human
brain and its data processing mechanism, the deep CNNmodel and
features extracted from it was of great assistance in simulating
multiscale impressions left by mass images on physician's brain.
And the decision mechanism we proposed was a better imitation
of doctors' symptom comparisons and antidiastole procedures in
the diagnosis. Evaluated by two objective measures and compared
with traditional effective methods, the proposed framework
achieved better performance in classification accuracy. According
to the results of two visualization strategies, the effectiveness of
deep features in classification task for mass images has been ver-
ified intuitively. In addition, the experimental results demon-
strated that the CNN model with adjustment for certain data was
effective even the scale of specific database was not that large. In
the future, we will make effort to find a better variation of CNN to
help obtain more describable features and design a decision
mechanism which is more like the real diagnosis procedure.
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